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Two-electron defect systems in ionic crystals: application to F' 
centres in alkali halides 
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i Division of Sciences. University of New Brunswick, Saint John. Canada 

Received 2 March 1994. in final form 9 lune 1994 

Abstract. The extended-ion method for the study of excited States in ionic crystals is modified 
for such two-electron defect systems as the P centre and positronium in alkali halides. Exclusive 
use of 1s floating Gaussian functions as the basis is the main feature of the method. Some d e p e  
of electron correlation is built-in in this method. Applied to F' centres, it is found that in NaI 
the spin-singlet ground state is deeply bound, and there is also a bound triplet state. Comparison 
with exprimental data regegarding the optical and thermal dissociation energies in several alkali 
halides gives reasonable agreement. 

1. Introduction 

Previously, we have presented a hybrid potential method [l] for the study of one-electron 
defects in insulators based on the extended-ion approach. The method consists of two main 
features. First, the occupied core states are divided into two groups: the outmost s and 
p (OSP) shells, and the remaining deep core (DC). The DC past is represented by the first 
two orders ion-size parameters [2,3], while the effects of the OSP are treated exactly. The 
second feature of this method is the exclusive use of Is (floating) Gaussians. This allows 
the various terms (Coulomb, exchange and overlap) associated with the OSP electrons to 
be efficiently calculated. The method has since been successfully applied for the study of 
various defects, including self-trapped excitons in alkali halides [4] and in alkaline earth 
fluorides [SI. as well as self-trapped exciton and impurity centres in riue~gas solids [6]. 
In particular, calculations based on this method have predicted for the first time that the 
self-trapped excitons in alMi halides are generally off-centre [4]. 

The main purpose of this paper is to extend the hybrid potential method to treat a two- 
electron defect c~entre in an insulator such as the F' centre (with two electrons trapped at a 
single anion vacancy) in alkali halides. With certain modifications, the method can also be 
applied to the case of positrons and positronium trapped at defect centres in alkali halides. 
This will be studied in a subsequent paper [7]. Here we shall be only concerned with the 
F' centres in alkali halides. 

In section 2, we present the general formalism. The defect wavefunction is represented 
as a linear combination of products of floating Gaussians, which are individually 
orthogonalized to the occupied core states. All the one-electron matrix elements can be 
treated in the same way as discussed in our earlier papers [1,4,6]. The most difficult term 
is the electron-electron interaction matrix element. In the appendix, we have shown that 
this can be approximated by simple interpolation formulae. 
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The lattice energy is treated in the usual way by means of the Born-Mayer type pair 
potential. For the polarization energy, the crystal is divided into two regions, the inner 
and outer regions. Ions in the inner region are relaxed explicitly by minimization of the 
system total.energy, and the electronic polarization energy is calculated by the Mott-Littleton 
method [SI. The outer region is treated as a dielectric continuum. 

We have applied the above method to study the F’ centres in KCI, NaCI, NaBr and 
NaI. The results are presented and discussed in section 3. There have been several different 
methods employed to treat the F‘ centres in alkali halides. These include the continuum 
method [lo]. the polaron method [ll], the point-ion model LIZ], and the extended-ion model 
[13]. A detailed discussion of earlier works is given in [14]. Among these, the point-ion 
model of La and Bartram [12] and the extended-ion model of Strozier and Dick [13] gave 
comparatively better results. Our method is most similar to that of the latter authors. We 
have calculated the optical binding energies and the thermal ionization energies for the F’ 
centres. The results are in satisfactory agreement with available experimental data. We 
have also performed a study of the excited states. The results show that a bound excited 
singlet state can exist in NaI but marginally so in NaBr, which appears to be in agreement 
with experiment. Recently, various ab initio Hartree-Fock methods have become available 
for studies of defects [15]. These are ultimately the most desirable approaches of defect 
calculation. In order to keep the size of the quantum cluster reasonably small, various 
treatments are devised, such as the use of pseudopotentials and classical treatment of the 
region outside the quantum cluster. The task is quite complex, however. When the defect is 
excited, thereby occupying a diffuse state as in the excited F centre, the limited size of the 
quantum cluster becomes serious. Because of the different treatments proposed to various 
aspects, a direct comparison of ab initio methods and an approximate one like the present 
one is outside the scope of this work. A recent review [I51 presents a useful overview of 
various methods currently in use. 

2. Method of calculation 

2.1. Electronic energy 

To be definite, we consider the case of an F’ centre in an alkali halide crystal. The method 
can readily be applied or adapted to treat other types of two-electron defects in insulators, 
such as positrons or positroniums in alkali halides. The electronic Hamiltonian of the F’ 
centre has the form, 

Here 

is the Coulomb interaction between the two electrons at position rI and r2, and 

is the one-electron Hamiltonian. Vp1 is the long range point-ion potential, and (V - Vp,) 
represents the short range Coulomb and exchange interactions which can generally be 
represented as a sum of the contributions from each of the atoms at lattice sites (RA). 
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The two-electron wavefunction of the F' centre is taken as a linear combination of a 
basis set of product functions, 

W T 1 . 7 . 2 )  = ~ C k 4 k , I ( ~ l ) 4 k . Z ( T Z )  (4) 
k 

where the 4s are Is Gaussians, which are individually orthogonalized to the occupied core 
States { X y . h h  

&.;(Ti) = G k . i ( ~ i i ) - C ( ~ y . * I G k . i ) ~ y , h ( ~ i )  i = 1 , 2 . . . ~  (5) 
Y.h 

Here, 

Gk.i(Ti) = Nk,i eXp[-ak,ilri - 5 ~ , i I ~ l  (6) 

represents a normalized floating 1s Gaussian centred at &J, which will also be denoted 
by G(ak,i, &,i: ri). In the present work, the occupied cores of cations are represented 
by the free ion wavefunctions compiled by Clementi and Roetti [16]. While the cation 
wavefunctions are hardly modified in an ionic lattice, the anion orbitals undergo a 
considerable shrinking due to the attractive Madelung potential well. As in our earlier 
works [ 1,4,5], anion wavefunctions have been recalculated with an approximate point- 
ion lattice potential imposed in self-consistent field Hartree-Fock calculations. The use of 
untreated free anion orbitals leads to higher F centre absorption energy, among other things 
PI.  

The electronic energy of the defect is determined by solving the secular equation 

[HH - ESkIl = 0 (7) 

where 

ski  = ( ~ k , l ~ k , Z ~ ~ I , l ~ i . Z )  = ( h . 1  ~@f,l)($k,Zk$f,Z) (8) 

Hk.i = ~ ~ k , l ~ k , Z ~ ~ ~ ~ I . l ~ I , Z ~  = ('$k,Z~$i,Z)(@k,l Iff1 14r.l) 
+ ~4k.1l4i.11~4k.2l~2l4f.2~ + (4k.l4k,21~1214i1.14f.Z) (9) 

The overlaps (&, j I&, i )  and the one-electron matrix elements (&,;lHi[g5j,i) can be efficiently 
evaluated using the hybrid potential method described in earlier publications [ 1,4,6]. The 
most difficult term is the electron-electron interaction matrix element (H&, this being 
the last term in equation (9). The treatment of this new term represents a major effort of 
this work. Following the same principle as in the case of the one-electron matrix elements, 
we have attempted to fit (H12)kf by some simple interpolation formula. The details and 
the interpolation forms are presented in the appendix. The method is very efficient, and in 
many respects can be regarded as an improvement over those of Wood and Wilson [I71 and 
Strozier and Dick [131. 

We note that the type of wavefunction in equation (4), which takes the form of a sum 
of product functions, has been employed in the early study of the hydrogen molecule. As 
discussed in details by Slater [18], this type of wavefunction ekes explicit account of the 
effect of conelation. As an example, we consider the following form of basis: 



where the Gs are 1s Gaussians as defined earlier. 
It is straightforward to show that this can be rewritten as 

( e x p [ - ~ ~  - EI’I + exp[-h lR+ C I * I ) ~ X ~ ~ - Q / ~ ) I T I ’ I  (11) 

Here, R = (T, + ~ ) / 2  and T = T I  - TZ. 
The explicit dependence on T indicates that the wavefunction 4, has taken account of 

some of the effects of correlation. 
In the basis functions of equation (4), the spin p a t  is not explicitly shown. Since 

the Hamiltonian X is symmetric with regard to the interchange ( 5 2 )  of TI and TZ, 
eigenfunctions of H must be either (space) symmehic or antisymmetric with regard to P~z. 
These correspond, according to the Pauli‘s exclusion principle, to spin-singlet and spin- 
triplet states respectively. Thus, for the wavefunciton in equation (4). it is crucial to include 

It is also necessary to include all the other partners required by symmetry. Then, 
diagonalization of H would yield duectly symmetric (singlet) and antisymmetric (triplet) 
states of various symmetry. For example, the four basis functions {G(or, 0 q)G(a, &.E; n), 
G(or, A t ;  rl)G(or, 0 T?)} with = (0, 0, d )  would yield two singlet states and part of two 
triplet states. 

2.2. Lattice and polarization energies 

The lattice energy (Ela,) consists of two parts, the lattice Coulomb energy and the short 
range repulsive energy. The Coulomb energy is the electrostatic energy of an infinite lattice 
of point ions. The repulsive energy is evaluated using the usual Born-Mayer potential 
V = Aexp(--r/p). The values of the parameters A and p are calculated by the method of 
Reitz, Seitz and Genberg 1191. 

Since the F’ centre is a defect with a net charge, the polarization effect is quite significant 
and also of long range. In this work, the lattice is divided into two regions: the inner region 
I containing ions close to the defect and the remaining outer region II. Ions in region I are 
relaxed explicitly to minimize the total energy of the system. The electronic polarization 
energy for this region is calculated by the lowest order Mott-Littleton method giving 

in the basis set ~ 4 ~ ( ~ 1 ) 4 d n ) l  the partners PIZ[A.I(TI)~~Z(TZ)~(= ~ ~ T I ) ~ ~ , I ( T z ) ) .  

1 = -- py . Ey 
2 ,  

Here, Ey is the electric field at the site of the ion due to the defect electrons and the point- 
ion lattice. py is the induced dipole which also reflects the interaction with other dipoles 
[20]. p has to be determined in a consistent way in equation (12). by iteration for example. 
We note that ionic polarization energy in this region has been accounted for by the lattice 
relaxation energy. 

The outer region II is treated as a dielectric continuum following the method developed 
by Hardy and Lidiard [Zl]. The total (electronic and ionic) polarization energy has the form 

where E is the local electric field, and p is the total induced dipole per unit volume. Various 
parameters required in equation (13). such as the polarizabilities and the Szigeti charges, 
can be found in [22]. 
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2.3. Method of minimization 

The total energy of the defect system 

(14) 
is now to be minimized simultaneously with regard to the Gaussian exponents, the positions 
of the Gaussian basis function and the positions of the ions in region (I). In practice, it is 
generally sufficient to search first for the optimal wavefunction and then to determine the 
equilibrium lattice positions. Details of the method have been presented earlier [1,4,6]. It 
is also necessary to test the convergence of the total system energy with regard to the size 
of region (I). 

m (!n Eta = Eeiecrmo + 81atticc + Epo, + EpDi 

3. Application to F" centres 

We have applied the above method to study the ground and excited states of the F' centres 
in KCI, NaC1, NaBr and NaI. In the following we present and discuss the results of our 
calculatins. 

3.1. Lattice disfoltions 

We first consider the ground state of the system which is a (1s)' singlet. The simplest 
(pseudo) wavefunction has the form 

@ c ( V i ,  rz) = G(U, 0; TdG(O1, 0; Tz)  (15) 
for which both electrons are centred on the vacancy site (0). As discussed above, we first 
determine the Gaussian exponent 01 by minimization of the electronic energy with the lattice 
ions fixed at the perfect lattice configuration. Once 0: is determined, the ions in region (I) 
are allowed to relax to minimize the total system energy in equation (14). Generally it is 
sufficient to include the four neighbouring shells to the vacancy as region (I). The results 
for the nearest-neighbour cation displacements are given in table 1. Experimental data are 
not available. Our results are generally larger than those of Berezin [23]; this may be partly 
due to the fact that in Berezin's work, only the first shell ions were allowed to relax. Our 
results also show quite substantial outward distortion for the second shell (about 5% of the 
cation-anion distance). The displacements of the third and fourth shell ions are generally 
small in comparison. Finally, we have used a larger basis set to improve the electronic 
energy at this relaxed lattice configuration. This basis consists of 5 bases of the form in 
equation (15) with 01 = 0.034.07 au. and 6 bases of the form G(u, E ;  rl)G(011, -5; T Z )  

as in equation (10). The electronic energy is lowered by about 0.7 eV. As discussed above, 
this is partly due to the effect of correlation. A large number of ions, about 300, contribute 
to E,I,,,. through various short range 'potential energy terms. 

We next consider the (1sZ.p) relaxed excited triplet state. First we note that a p-like 
wavefunction can be simulated by a pair of Gaussians, G(a, 5; T )  -G(or, -4 r). Thus, the 
simplest wavefunction of the (lszp,) triplet state has the form 

@(TI ,  T Z )  = G(u, 0;  rt)[G(0:, 5; TZ) - G(% -5; 4 1  , .  

- [G(% 5; TI) - G(u, -5; rl)lG(0:, 0; 4 (16) 
where 5 = (0, 0, c). As with the ground state, 01 and are treated as variational parameters. 
Once these are determined, the lattice is relaxed to give the equilibrium ionic displacements. 
It is interesting to note that the two NN atoms on the z-axis have relatively smaller 
displacements. The total system energy is further minimized by enlarging the basis set. 
The final basis set consists of 3 bases of the form (16) with a! = 0.04, 0.05, 0.06. 
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Table 1. Calculated optical binding energy, Eo,, and thermal dissociation energy, Eh, of the 
F' c e n m  are compared with experimental values (inside a bracket). E 6 p )  and E#) me the 
calculated ground state energy of the F' Cenm and F centre respectively in its own equilibrium 
lattice configuration. E @ )  is the F centre energy in the distortion held of the F centre ground 
state. x is the ~leetron aflinity. ARI is the fim "ie shell rel%xation of 'he F' cenhe gmund 
state, given in A. All energies are in eV. 

NaCl KCI NaBr NaI 

E @ )  335  4.33 3.21 0.31 
ARI 0.33 0.45 0.53 0.79 
E 6 0  4.03 3.86 3.73 2.47 
E S P )  5.98 5.61 6.05 4.64 
X P 0.4Ib (1.0) 1 . 9  

(assumed value) 
E,,,, -2.23 -0.87 -1.84 -2.83 

(-1.72') (-0.9ff) (-1.5Sf) (-1.9Of) 
(-1.lOd) (-1.OV) 

(-1.16) (-0.35') (for Kl) 

Eh -0.28 0.88 0.48 -0.66 
(-0.5') (-O.4Oh) (-0.47i) 

Reference [XI. 
Reference 1131. 
Reference [91. 

* Reference I8bl. 
Reference [271. 
Reference [ZSI. 

6 Reference [29]. 
Reference [30]. 

i Reference 1311. 
j ~ e f ~ ~ n c e  ~321. 

3.2. Optical binding energy 

The optical binding energy of the F' centre, E,@'), is defined as the energy difference 
between the F' centre ground state and the photoionized F' centre state. However, in cluster 
calculations of this type, photoionized states are difficult to obtain. Alternatively, the binding 
energy can be written as 

EopF') = (Eg(F*) - X) - EgP) (17) 

where E8(F') is the energy of the ground state of the F' centre, Eg(F*) is the energy of the 
(unrelaxed) F centre ground state at the lattice configuration appropriate to the F' centre, 
and x is the binding energy of an electron at the bottom of the conduction band. Results 
of our calculations are presented in table 1. We have also included the thermal ionization 
energies which are calculated according to 

&F') = [ E g o  - X I  - (18) 

where E,@) is the energy of the relaxed ground state of the F centre. Our results are in 
satisfactory agreement with the experimental data for NaC1, as well as in general accord with 
an earlier calculation [13]. Similar experimental data for NaBr and NaI are. not available. 
However, there is strong experimental evidence [26] that the ground state of the F' centre 
becomes more and more deeply bound from NaCl to NaI. This trend is indeed shown in 
the results of our calculation, table 1. 
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3.3. Excited stales of F centre in NaI 

The results presented above show that the F' centre in KC1 and NaCl has rather shallow 
binding energy which implies that the existence of a bound excited state is highly 
improbable. In fact we have found that the energy of the lowest Is2plike excited state 
in NaCl is still greater than ( E g Q  - x ) .  Hence if formed, such states would spontaneously 
decay. On the other hand, the F' centres in NaBr and NaI are quite deeply bound, and 
there is experimental evidence that both NaBr and NaI have bound excited states [27]. The 
situation for NaI is of particular interest because of the unusual feature that its F' band has 
a Gaussian shape with narrow halfwidth (0.3 eV) and is located on the high energy side 
(2.4 eV) of the F band (2.1 eV), indicating the possible existence of a bound excited singlet 
state in this material. Absorption experiments have also suggested the existence of a bound 
triplet state [%I. Transitions from this state to the conduction band give rise to a broad 
band at 1.45 eV. 

We have performed calculations for ls2pJike excited states of NaI using basis functions 
similar to equation (16) but of even parity. First, using the F' centre ground state distortion 
field, we have obtained the Franck-Condon transition energy to the (ls2pJ excited singlet 
(ex.1) state: 

AE(g -+ ex.1) = Eex.,(F') - E,(F') = 2.0 eV (19) 

which is in reasonable agreement with experiment. For the relaxed excited triplet (ex.3) 
state, we first employed a minimal basis and determined the lattice configuration by 
minimization with regard to the lattice ion positions. A larger basis set is used to obtain 
a better estimate of the energy of the system, E%.3(F'). The same distortion field is then 
used to calculate the energy of the F centre, E,sfJ?), in the ionized state of the F' centre. 
The transition energy from the excited triplet state to the conduction band is given by: 

AE(ex.3 -+ cond) = [Eex.3(F*) - x ]  - E,.s(F') = 3.73 - 1.5 - 0.93 = 1.3 eV. (20) 

which should be compared to the experimental value of 1.45 eV mentioned above. These 
data are assembled in table 2, together with those for NaBr. 

Table 2. Calculated optical transition energies of the F' centre in Nal and NaBr. Experimental 
values are inside the bracket. All energies in eV. E-.l(F') and Ecr.3(F)) stand respectively for 
the excited singlet and excited triplet F' centre states. Eu.s(F) is for the F centres in the field 
of the triplet F' centres. 

EdF9 3.21 0.31 
&.I (F') 5.49 2.28 
Es + Em.1 -2.28 -1.91 

ECX.3F') 4.35 0.93 
Ecx.3F) 5.31 3.13 
Eu.3 + ionization 0.04 -1.30 

(-2.49 

(-1.45") 

Reference 1231. 

The case for NaBr is somewhat intermediate between NaCl and NaI. We have also 
found that the bound excited triplet state may exist in this material. It is interesting to note 



7722 

in this regard that in the case of the H- ion, being an hydrogen analogue of the F‘ centre, 
theoretical work has been unable to prove or disprove the existence of a bound triplet state. 

In this paper we have presented an efficient method of calculating the structure of 
two-electron defect systems in alkali halides within the approximation of the extended ion 
method. It is based on a systematic use of spherically symmetric floating Gaussian functions 
as bases. The results obtained for the F’ centre in several alkali halides are in reasonable 
accord with observed data. In NaI, we found deeply bound F’ centre ground state, as well 
as possibly bound triplet state. The deeply bound F’ centre raises the question of possible 
negative U effect in NaI. The present method, after some modifications, is applied to the 
study of free and self-trapped positronium in alkali halides [7]. 

C G zhnng et a1 

Appendix. The electron-electron interaction integral 

Upon substitution of equation (5) into (H&, the last term in equation (9). we find that 
(H&l can be written as a sum of terms which can be classified into five categories: Ox, 1x. 
2x, 3x, and 4% terms. Here an nX term (n = 0-4) represents an integral of involving 
n core orbitals xY,i  and (4-n) Gaussians, multiplied by n overlaps (Xy.ylGfi) .  We further 
classify the 2x terms as 2x Coulomb-like terms or 2x exchange-like terms according to 
whether the two core orbitals in the integral have the same or different electronic coordinates. 

There is only one Ox term, which involves four Gaussians, and this represents the 
dominant contribution to (H&f. All the other terms involve overlaps between the 
Gaussians and the occupied core states. For localized defects, such as the F’ centre, the 
overlap with the DC orbitals is much smaller than that with OSP orbitals. Thus we shall only 
be concerned with the OSP orbitals in all the nx terms. 

Initially all these terms are accurately evaluated after the OSP orbitals are represented 
by a large number (- 15) of Gaussians. The results of this tedious calculation show that 
only the 1~ and 2% Coulomblike terms are dominant because the other terms are at least 
two orders of magnitude smaller. 

To further reduce the computing time, we have attempted to represent the outer s, p 
orbitals by single normalized Gaussians: 

xs + AsNsex~[-Bsr21 

xpr + ApNpz exp[-Bpr21 

where the parameters A and ,4 are adjusted so as to fit the exact values of the 1x and 2% 
Coulomblike terms. The fitting was performed by the least squares method. 
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