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Abstract. The extended-ion method for the study of excited states in ionic crystals is modified
for such two-electron defect systems as the F’ centre and positronium in alkali halides. Exclusive
use of 1s floating Gaussian functions as the basis is the main feature of the methed. Some degree
of electron correlation is built-in in this method. Applied to F' centres, it is found that in Nal
the spin-singlet ground state is deeply bound, and there is alsc a bound triplet state. Comparison
with experimental data regarding the opfical and thermal dissociation energies in several alkali
halides gives reasonable agreement.

1. Imtroduction

Previously, we have presented a hybrid potential method [1] for the study of one-clectron
defects in insulators based on the extended-ion approach. The method consists of two main
features. First, the occupied core states are divided into two groups: the outmost s and
p (OSP) shells, and the remaining deep core (DC). The DC past is represented by the first
two orders ion-size parameters {2, 3], while the effects of the OSP are treated exactly. The
second feature of this method is the exclusive use of 1s (floating) Gaussians, This allows
the various terms (Coulomb, exchange and overlap) associated with the OSP electrons to
be efficiently calcuiated. The methed has since been successfully applied for the study of
various defects, including self-irappéd excitons in alkali halides [4] and in alkaline earth
fluorides [5]. as well as self-trapped exciton and impurity centres in rare” gas solids [6].
In particular, calculations based on this method have predicied for the first time that the
self-trapped excitons in alkali halides are generally off-centre [4].

The main purpose of this paper is to extend the hybrid potential method to treat a two-
electron defect centre in an insulator such as the ' centre (with two electrons trapped at a
single anion vacancy) in alkali halides. With certain modifications, the method can also be
applied to the case of positrons and positronium trapped at defect centres in alkali halides.
This will be studied in a snbsequent paper [7]. Here we shall be only concerned with the
F' centres in alkali halides.

In section 2, we present the general formalism. The defect wavefunction is represented
as a linear combination of products of floating Gaussians, which are individually
orthogonalized to the occupied core states. All the one-electron mafrix elements can be
treated in the same way as discussed in our earlier papers [1,4, 6]. The most difficult term
is the electron—electron interaction matrix element. In the appendix, we have shown that
this can be approximated by simple interpolation formulae.
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The lattice energy is treated in the usual way by means of the Born-Mayer type pair
potential. For the polarization energy, the crystal is divided into two regions, the inner
and outer regions. Ions in the inner region are relaxed explicitly by minimization of the
system total energy, and the electronic polarization energy is calculated by the Mott-Liitleton
method [8]. The outer region is treated as a dielectric continuum.

We have applied the above method to study the F' centres in KCl, NaCl, NaBr and
Nal. The results are presented and discussed in section 3. There have been several different
methods employed to treat the F' centres in alkali halides. These include the continuum
methaod [10], the polaron method [11], the point-ion model [12], and the extended-ion model
[13]. A detailed discussion of earlier works is given in [14]. Among these, the point-ion
moedel of La and Bartram [12] and the extended-ion model of Strozier and Dick [13] gave
comparatively better results. Our method is most similar to that of the latter authors. We
have calculated the optical binding energies and the thermal ionization energies for the F
centres. The results are in satisfactory agreement with available experimental data. We
have also performed a study of the excited states. The results show that a bound excited
singlet state can exist in Nal but marginally so in NaBr, which appears to be in agreement
with experiment. Recently, various ab initio Hartree-Fock methods have become available
for studies of defects [15]. These are ultimately the most desirable approaches of defect
calculation. In order to keep the size of the quantum cluster reasonably small, various
treatments are devised, such as the use of pseudopotentials and classical treatment of the
region outside the quantum cluster. The task is quite complex, however. When the defect is
excited, thereby occupying a diffuse state as in the excited F centre, the limited size of the
quantum cluster becomes serious. Because of the different treatments proposed to various
aspects, a direct compatison of ab initio methods and an approximate one like the present
one is outside the scope of this work. A recent review [[5] presents a useful overview of
various methads currently in use.

2. Method of calculation

2.1. Electronic energy

To be definite, we consider the case of an F centre in an alkali halide crystal. The method
can readily be applied or adapted to treat other types of two-electron defects in insulators,
such as positrons or positroniums in alkali halides. The elecironic Hamiltonian of the F'
centre has the form,

H =H + Hy+ Hya. 1

Here

82

2

Hyp = ———
i1 — 72|

is the Coulomb interaction between the two electrons at position 7y and r2, and

2
Hi = —%%v,? F V() F V() — Vo)) i=1,2... 3)

is the one-electron Hamiltonian. Vpp is the long range point-ion potential, and (V' — Vpp)
represents the short range Coulomb and exchange interactions which can generally be
represented as a sum of the contributions from each of the atoms at lattice sites {R; }.
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The two-electron wavefunction of the F’ centre is taken as a linear combination of a
basis set of product functions,

O, 1) = 3 Cedna(r)dra(ra) ' @)
k

where the ¢s are 1s Gaussians, which are individually orthogonalized to the occupied core
states {x,..},

G () = Gralr) = ) _(tpalGraddpalr)  i=12... (5)
B }’,A-
Here,
Gr.i(rs) = Nej expl—og ¢lri — &) (©)

represents a normalized floating 13 Gaussian centred at & ;, which will also be denoted
by G(oyy, &.i; ). In the present work, the occupied cores of cations are represented
by the free ion wavefunctions compiled by Clementi and Roetti [16]. While the cation
wavefunctions are hardly modified in an ionic lattice, the anion orbitals undergo a
considerable shrinking due to the attractive Madelung potential well. As in our earlier
works [1,4,5], anion wavefunctions have been recalculated with an approximate point-
ion lattice potential imposed in self-consistent field Hartree-Fock calculations. The use of
untreated free anion orbitals feads to higher F centre absorption energy, among other things
[1].

The electronic energy of the defect is determined by solving the secular equation

|Hyg — ESg| =0 : - 7
where
St = {Pr1Px 21110120 = (Pr11dr,1) (x 2(¢,2} (8)
Hey = (fuar2  HIdr1¢r2) = (g2l 2) (e 1 Hilgre)

+ (@r @1 e Haldh2) + (D102 Hrzlradia) 9

The overlaps {¢g ;|¢7,:} and the one-electron matrix elements {¢y ;| H; [ ;) can be efficiently
evaluated using the hybrid potential method described in earlier publications [1,4, 6]. The
most difficult term is the electron—electron interaction matrix element (Hjs)y, this being
the last term in equation (9). The treatment of this new term represents a major effort of
this work. Following the same principle as in the case of the one-electron matrix elements,
we have attempted to fit (Hi2)y by some simple interpolation formula. The details and
the interpolation forms are presented in the appendix. The method is very efficient, and in
many respects can be regarded as an improvement over those of Wood and Wilson [17] and
Strozier and Dick [13].

We note that the type of wavefunction in equation (4), which takes the form of a sum
of product functions, has been employed in the early study of the hydrogen molecule. As
discussed in details by Slater [18], this type of wavefunction takes explicit account of the
effect of correlation. As an example, we consider the following form of basis:

¢ =G0, & )G, —& ) + Gle, =& r1)G(w, & 1) (10
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where the Gs are 13 Gaussians as defined earlier.
It is straightforward to show that this can be rewritten as

(exp[—2ct| R — £I°] + exp[—2¢t| R + £[*]) exp[—(ee/2}|7]*] (11

Here, R=(r{+r)/2and r =r; — rs.

The explicit dependence on 7 indicates that the wavefunction & has taken account of
some of the effects of correlation.

In the basis functions of equation {4), the spin part is not explicitly shown. Since
the Hamiltonian H is symmetric with regard to the interchange (Pj2) of 1 and 72,
eigenfunctions of A must be either (space) symmetric or antisymmetric with regard to Py,
These correspond, according to the Pauli’s exclusion principle, to spin-singlet and spin-
triplet states respectively. Thus, for the wavefunciton in equation (4), it is crucial to include
in the basis set {P1(r1)Pk2{r2}} the partners Pia[y 1(T1)Pia(T2)I(= P 2(r)dr1(72))-
It is also necessary to include all the other partners required by symmetry. Then,
diagonalization of H would yield directly symmetric (singlet) and antisymmetric (triplet)
states of various symmetry. For example, the four basis functions {G (e, 0; r) G (&, £E&; 72),
Gloe, 2&; m1)G (e, O; 7))} with £ = (0, 0, 4) would yield two singlet states and part of two
triplet states.

2.2. Lattice and polarization energies

The lattice energy (E,) consists of two parts, the lattice Coulomb energy and the short
range repulsive energy. The Coulomb energy is the electrostatic energy of an infinite lattice
of point ions. The repulsive energy is evaluated using the usual Born-Mayer potential
V = Aexp(—r/p). The values of the parameters A and p are calculated by the method of
Reitz, Seitz and Genberg {19].

Since the F centre is a defect with a net charge, the polarization effect is quite significant
and also of fong range. In this work, the lattice is divided into two regions: the inner region
I containing ions close to the defect and the remaining outer region II. Ions in region I are
relaxed explicitly to minimize the total energy of the system. The electronic polarization
energy for this region is calculated by the lowest order Mott—Littleton method giving

)
By = —§Z“r -E, (12)

Here, E, is the electric field at the site of the ion due to the defect electrons and the point-
ion lattice. p, is the induced dipole which also reflects the interaction with other dipoles
[20}. p has to be determined in a consistent way in equation (12}, by iteration for example.
We note that ionic polarization energy in this region has been accounted for by the lattice
relaxation energy.

The outer region 11 is treated as a dielectric continunm following the method developed
by Hardy and Lidiard [21]. The total (electronic and ionic) polarization energy has the form

1
ES) = 3 f E-pr)&r (13)
(I

where E is the local electric field, and g is the total induced dipole per unit volume. Various
parameters required in equation (13), such as the polarizabilities and the Szigeti charges,
can be found in [22].
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2.3. Method of minimization
The total energy of the defect system
Erot = Eeteorron + Bratice + Efgy + Efey (14)

is now to be minimized simultaneously with regard to the Gaussian exponents, the positions
of the Gaussian basis function and the positions of the ions in region (I). In practice, it is
generally sufficient to search first for the optimal wavefunction and then to determine the
equilibrinm lattice positions. Details of the method have been presented earlier [1,4,6]. It
is also necessary to test the convergence of the total system energy with regard to the size
of region (I).

3. Application to F' centres

We have applied the above method to study the ground and excited states of the F' centres
in KCl, NaCl, NaBr and Nal. In the following we present and discuss the resuits of our
calculatins.

3.1. Lattice distortions

We first consider the ground state of the system which is a (1s)* singlet. The simplest
(pseudo) wavefunction has the form

bg(ry, ) = Gle, O, 1) G, 0; 72) (15)

for which both electrons are cenired on the vacancy site (@). As discussed above, we first
determine the Gaussian exponent ¢ by minimization of the electronic energy with the lattice
ions fixed at the perfect lattice configuration. Quce o is determined, the tons in region (1)
are allowed to relax to minimize the total system energy in equation (14). Generally it is
sufficient to include the four neighbouring shells to the vacancy as region (I). The results
for the nearest-neighhour cation displacements are given in table 1. Experimental data are
not available. Our results are generally larger than those of Berezin [23]; this may be partly
due to the fact that in Berezin's work, only the first shell ions were allowed to relax. Our
results also show quite substantial outward distortion for the second shell (about 5% of the
cation—anion distance). The displacements of the third and fourth shell ions are generally
small in comparison. Finally, we have used a larger basis set to improve the electronic
energy at this relaxed lattice configuration. This basis consists of 5 bases of the form in
equation (15) with o = 0.03-0.07 an. and 6 bases of the form G(w, &; m)Glo, —&; 12)
as in equation {10). The electronic energy is lowered by about 0.7 eV. As discussed above,
this is partly due to the effect of correlation. A large number of ions, about 300, contribute
to Eeeotron through various short range potential energy terms.

We next consider the (1s2p) relaxed excited triplet state. First we note that a p-like
wavefunction can be simulated by a pair of Gaussians, G{z, 5 ) —Glo, —&; r). Thus, the
simnplest wavefunction of the (1s2p;) triplet state has the form

D(r1, 2} = Glet, 0, 7)[Gler, & 12) — G, =& 72)]

~[Gle, &: 1) — Glot, —&; 11)1G (v, 0; 72) (16)
where £ = (0, 0, £). As with the ground state, o and £ are treated as variational parameters.
Once these are determined, the lattice is relaxed to give the equilibrium ionic displacements.
It is interesting to note that the two NN atoms on the z-axis have relatively smaller

displacements. The total system energy is further minimized by enlarging the basis set.
The final basis set consists of 3 bases of the form (16) with & = 0.04, 0.05, 0.06.
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Table 1. Calculated optical binding energy, Eqp and thermal dissociation energy, Ey, of the
F centres are compared with experimental values (inside a bracket). E£;(F) and E(F) are the
calculated ground state energy of the F' centre and F centre respectively in its own equilibriam
lattice configuration. E,(F*) is the F centre energy in the distortion field of the ¥ centre ground
state. x is the electron affinity. AR| is the first atomic shell relaxation of the F' centre ground
state, given in A. Al energies are in eV.

NaCl  KCI NaBr Nal

E(Fy 375 433 321 0.31

ARy 0.33 045 0.53 0.79

E(F) 403 3.86 3.73 247

E,(F") 558 561 6.05 4.64

X i 041t (LO) 1.5

(assumed value)

Eqp -223 —087 -—184 ~2.83
(—1.72% (—=0.90%) (—1.550) (—1.900
(=1.10% (~1.00%

E —0.28 0.88 0.48 —-0.66
(=039  (—0.40% (—0.47)
(—1L18)  (—0.35H {for KI)

* Reference [24].
b Reference [13].
¢ Reference [9].

4 Reference [8b).
¢ Reference {27].
I Reference [28].
& Reference [29].
b Reference [30].
i Reference [31].
i Reference [32].

3.2. Optical binding energy

The optical binding energy of the F centre, Eop(F'), is defined as the energy difference
between the ' centre ground state and the photoionized F' centre state. However, in cluster
calculations of this type, photoionized states are difficult to obtain. Alternatively, the binding
energy can be written as

Eqp(F) = (Eg(F) — ) — Ex(F) a7

where E;(F') is the energy of the ground state of the F' centre, E,(F*) is the energy of the
{unrelaxed) F centre ground state at the laftice configuration appropriate to the F centre,
and x is the binding energy of an electron at the bottom of the conduction band. Results
of our calculations are presented in table 1. We have also included the thermal ionization
energies which are calculated according to

Eq(F) = [Eg(F) — x] — E¢(F) (18)

where Eg(F) is the energy of the relaxed ground state of the F centre. Qur results are in
satisfactory agreement with the experimental data for NaCl, as well as in general accord with
an earlier calculation [13]. Similar experimental data for NaBr and Nal are not available.
However, there is strong experimental evidence {26] that the ground state of the F' centre
becomes more and more deeply bound from NaCl to Nal. This trend is indeed shown in
the results of our calculation, table 1.
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3.3. Excited states of F' centre in Nal

The results presented above show that the F' cenire in KCl and NaCl has rather shailow
binding energy which implies that the existence of a bound excited state is highly
improbable. In fact we have found that the energy of the lowest 1s2p-like excited state
in NaCl is still greater than (E;(F) — x). Hence if formed, such states would spontaneously
decay. On the other hand, the F' centres in NaBr and Nal are quite deeply bound, and
there is experimental evidence that both NaBr and MNal have bound excited states [27]. The
simation for Nal is of particular interest because of the unusual feature that its ¥ band has
a Gaussian shape with narrow halfwidth (0.3 eV) and is located on the high energy side
(24 V) of the F band (2.1 ¢V), indicating the possible existence of a bound excited singlet
state in this material. Absorption experiments have also suggested the existence of a bound
triplet state [26]. Transitions from this state to the conduction band give rise to a broad
band at 1.45 &V,

We have performed calculations for 152p,-like excited states of Nal using basis functions
similar to equation (16) but of even parity. First, using the F’ centre ground state distortion
field, we have obtained the Franck—Condon transition energy to the (1s2p,) excited singlet
{ex.I) state:

AE(g — ex.1) = Eox 1 (F) — Eg(F) = 2.0 6V (19)

which is in reasonable agreement with experiment. For the relaxed excited triplet (ex.3)
state, we first employed a minimal basis and determined the lattice configuration by
minimization with regard to the lattice ion positions. A larger basis set is used to obtain
a better estimate of the energy of the systemn, Ee3(F). The same distortion field is then
used to caleulate the energy of the F centre, E.3(F"), in the ionized state of the F' centre,
The transition energy from the excited triplet state to the conduction band is given by:

AE(ex3 — cond) = [Eeza(F*) — ] — Eexa(FY =373 -15-093 =13 eV. 20y

which should be compared to the experimental value of 1.45 eV mentioned above. These
data are assembled in table 2, together with those for NaBr.

Table 2. Calculated optical transition energies of the F' centre in Nal and MaBr. Experimental
values are inside the bracket. All energies in eV. Eqy 1 () and Eec3(F) stand respectively for
the excited singlet and excited triplet F’ centte states. Ee.3(F*) is for the F centres in the field
of the triplet F* centres.

NaBr  Nal

Eq (B 3.21 0.31
Eex 1 (F') 549 2.28
Ey — Ex -228 -1.97

(=2.4%)
Eexa(®) 435 093
Eexa(F*) 531 373
Eexn — ionization  0.04 —1.30

(—1.45%)

* Reference [23].

The case for NaBr is somewhat intermediate between NaCl anpd Nal. We have also -
found that the bound excited triplet state may exist in this material. It is interesting to note
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in this regard that in the case of the H™ ion, being an hydrogen analogue of the ¥’ centre,
theoretical work has been unable to prove or disprove the existence of a bound triplet state.

In this paper we have presented an efficient method of calculating the structure of
two-electron defect systems in alkali halides within the approximation of the extended ion
method. It is based on a systematic use of spherically symmetric floating Gaussian functions
as bases. The results obtained for the F' centre in several alkali halides are in reasonable
accord with observed data. In Nal, we found deeply bound F centre ground state, as well
as possibly bound triplet state. The deeply bound F' centre raises the question of possible
negative U effect in Nal. The present method, after some modifications, is applied to the
study of free and self-trapped positronium in alkali halides [7].

Appendix. The electron—electron interaction integral

Upon substitution of equation (5) into (Hiz)r,, the last term in equation (9), we find that
{H}2)x can be written as a sum of terms which can be classified into five categories: Oy, 1x,
2x, 3y, and 4y terms. Here an ny term (n = 0-4) represents an integral of Hyz involving
n core orbitals x,,, and (4 —n) Gaussians, multiplied by » overlaps (X, ,,|1Gy;). We further
classify the 2y terms as 2y Coulomb-like terms or 2y exchange-like terms according to
whether the two core orbitals in the integral have the same or different elecironic coordinates.

There is only one 0y term, which involves four Gaussians, and this represents the
dominant contribution to (Hys)y. All the other terms involve overlaps between the
Gaussians and the occupied core states. For localized defects, such as the F' centre, the
overlap with the DC orbitals is much smaller than that with OSP orbitals. Thus we shall only
be concerned with the OSP orbitals in all the ry terms.

Initially all these terms are accurately evaluated after the OSP orbitals are represented
by a large number (~ 15) of Gaussians. The results of this tedious calculation show that
only the 1y and 2y Coulomb-like terms are dominant because the other terms are at least
two orders of magnitude smaller.

To further reduce the computing time, we have attempted to represent the outer s, p
orbitals by single normalized Gaussians:

Xs = AsN; eXP[-ﬂsfz]
Xpz = APsz exp[-—-ﬁprzl

where the parameters A and g8 are adjusted so as to fit the exact values of the 1y and 2y
Coulomb-like terms. The fitting was performed by the least squares method.
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